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SUMMARY

The space–time fluid–structure interaction (FSI) techniques developed by the Team for Advanced Flow
Simulation and Modeling (T�AFSM) have been applied to a wide range of 3D computation of FSI
problems, some as early as in 1994 and many with challenging complexities. In this paper, we review
these space–time FSI techniques and describe the enhancements introduced recently by the T�AFSM to
increase the scope, accuracy, robustness and efficiency of these techniques. The aspects of the FSI solution
process enhanced include the deforming-spatial-domain/stabilized space–time (DSD/SST) formulation,
the fluid–structure interface conditions, the preconditioning techniques used in iterative solution of the
linear equation systems, and a contact algorithm protecting the quality of the fluid mechanics mesh
between the structural surfaces coming into contact. We present a number of 3D numerical examples
computed with these new stabilized space–time FSI (SSTFSI) techniques. Copyright q 2007 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Modelling of fluid–structure interaction (FSI) problems has been receiving much attention in recent
years, and we are seeing many good papers and PhD theses on this subject (see, for example,
[1–28]). The main reason is that most engineering applications involve some sort of FSI problem,
and the FSI researchers have been quite successful in modelling such applications, from pipes [29]
to parachutes [30–38] and from blood flow [14, 16, 39–42] to bridges [23] and tents [28]. Another
reason is that FSI modelling offers a number of numerical challenges for computational researchers.
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The spatial domain occupied by the fluid changes in time as the fluid–structure interface moves,
and the numerical model will need to handle that. Accurate representation of the flow field near
the interface requires that the mesh be updated to track the interface, and this requires special
attention in 3D problems with complex geometries. Solution of the coupled fluid and structural
mechanics equations offers additional challenges. What technique should be used to solve those
coupled equations depends on a number of factors, including (a) how sensitive the structure is
to the variations in the fluid dynamics forces; (b) how much programme modularity is desired for
the fluid and structural mechanics solvers, and (c) how much previous experience one has with
the kind of FSI problem that needs to be computed. Structural surfaces coming into contact create
additional challenges for the generation and update of the fluid mechanics mesh, and this needs
to be addressed with a contact algorithm that can guard the quality of the mesh. In this paper,
we describe the computational methods developed by the Team for Advanced Flow Simulation
and Modeling (T�AFSM)‡ to address these FSI challenges. We also describe the new versions of
these methods, developed recently by the T�AFSM to increase the scope, accuracy, robustness and
efficiency of the their FSI computations.

In FSI modelling, the preference of the T�AFSM has always been using an interface-tracking
technique. In this category of techniques, as the structure moves and the spatial domain occu-
pied by the fluid changes its shape, the mesh moves to accommodate this shape change and to
follow (i.e. ‘track’) the fluid–structure interface. Moving the fluid mesh to track the interface
enables us to control the mesh resolution near that interface and obtain more accurate solutions
in such critical flow regions. One of the most well-known examples of the interface-tracking
techniques is the arbitrary Lagrangian–Eulerian (ALE) finite element formulation [43], which
by itself has been receiving much attention (see, for example, [17, 44, 45]). In fact, a good ma-
jority of the interface-tracking FSI algorithms are based on the ALE formulation (see, for ex-
ample, [1, 2, 8, 11, 15, 16, 18–23, 26, 28]). Most of these ALE-based FSI algorithms also include
the streamline-upwind/Petrov–Galerkin (SUPG) [46, 47] and pressure-stabilizing/Petrov–Galerkin
(PSPG) [48, 49] formulations. The SUPG formulation prevents numerical instabilities that might
be encountered when we have high Reynolds number and strong boundary layers. With the PSPG
formulation, we can use, without numerical instabilities, equal-order interpolation functions for ve-
locity and pressure. An earlier version of the pressure stabilization, for Stokes flows, was introduced
in [50].

As the interface-tracking technique the T�AFSM has always been using the deforming-spatial-
domain/stabilized space–time (DSD/SST) formulation [48, 51, 52], which was introduced by the
T�AFSM in 1991. In the DSD/SST formulation, the stabilization is again based on the SUPG and
PSPG formulations. The DSD/SST formulation was originally intended to be a general-purpose
interface-tracking technique for simulation of problems involving moving boundaries or inter-
faces, whether fluid–solid or fluid–fluid. The stabilized space–time formulations were introduced
and tested earlier by other researchers in the context of problems with fixed spatial domains (see, for
example, [53]), mainly because of the superior stability and accuracy characteristics of these formu-
lations. In the DSD/SST method, the space–time computations are carried out for one space–time
‘slab’ at a time, where the ‘slab’ is the slice of the space–time domain between the time levels n
and n + 1. This spares a 3D computational problem from becoming a 4D problem including

‡This team name was intended to imply the research team led by Tezduyar also prior to when the team assumed
this specific name.
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the time dimension. Some additional special features are exploited in the special DSD/SST
(S-DSD/SST) formulation [35, 36] to make the calculation of the element-level vectors and ma-
trices more efficient. It is also worth noting here that the version of the DSD/SST formulation
given in [54] is clearer in representing the implementation used in the computations the T�AFSM
has been practicing from the beginning (see Remark 1 in Section 3.1).

In the mesh update strategy envisioned originally with the DSD/SST formulation, the updating
is based on moving it for as many time steps as we can and remeshing (generating fully or partially
new set of nodes or elements) only as frequently as we need to. Moving the mesh is accomplished
with the method introduced in [55] and described in more detail in [56]. The motion of the nodes
is governed by the equations of elasticity and the mesh deformation is dealt with selectively based
on the sizes of the elements (see also [57]). The Jacobian of the mapping from the element domain
to the physical domain is dropped in the finite element formulation of the elasticity equations. This
‘Jacobian-based stiffening’ is equivalent to dividing the elastic modulus by the element Jacobian
and results in an increase in the stiffness of the smaller elements, which are typically placed
near the fluid–structure interfaces. Mesh-moving techniques with functionally comparable features
were later introduced in [58]. The T�AFSM introduced a number of enhancements to the general
mesh update technique originally introduced in [55]. A mesh-moving optimization study based
on using different ratios of the Lamé parameters of the elasticity equations was reported in [56].
A ‘stiffening exponent’ was introduced in [59] for the Jacobian-based stiffening, together with
a mesh-moving optimization study based on using different values of this exponent. The solid-
extension mesh-moving technique (SEMMT) [60, 61] addresses the challenges involved in moving
a mesh with very thin fluid elements near the solid surfaces. In the move-reconnect-renode mesh
update method (MRRMUM) [38, 62], two remeshing options are defined, with each one proposed
to be used when it is most effective to do so. The mesh update and mesh-moving topics, including
the various enhancements introduced by the T�AFSM, will be discussed more in Section 4.

The space–time FSI techniques introduced by the T�AFSM use as their core technologies the
DSD/SST formulation and mesh update methods described in earlier paragraphs of this section.
The structural mechanics equations are solved using a semi-discrete finite element formulation. We
see no compelling reason to use a space–time formulation for those equations. The first applications
of these techniques were reported in [63] for 2D flow computation of vortex-induced vibrations of
a cylinder (0D structure), and in [29] for 3D computation of flow in a flexible, cantilevered pipe
(1D structure). The earliest application to axisymmetric FSI computations was reported in [30] for
modelling the inflation of a parachute. Applications to 3D FSI computations with incompressible
flows and membranes and cables were first reported, in the context of parachute simulations, in
[31–33, 64, 65]. More applications to 3D parachute FSI computations were reported in [34, 66].

In the space–time FSI techniques (or in other interface-tracking FSI techniques), at each time
step, one needs to solve the fully discretized, coupled fluid and structural mechanics and mesh-
moving equations. As it was mentioned in the first paragraph, the solution approach would be
determined by factors such as the sensitivity of the structure to the variations in the fluid dynamics
forces, the desired level of programme modularity for the fluid and structural solvers, and the level
of previous experience with the FSI problem to be computed. The different solution approaches
developed by the T�AFSM are suitable for emphasizing different selections of these factors. The
quasi-direct [35–37] and direct coupling techniques [35–37] give us more robust algorithms for
FSI computations where the structure is light and therefore more sensitive to the variations in the
fluid dynamics forces. They would be preferred especially when one does not have much previous
experience with the kind of FSI problem that needs to be computed. We do not get that level of
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robustness from the block-iterative coupling technique [35–37, 67–71] or its earlier and even less
robust versions [29–31]. But the block-iterative technique gives us more flexibility in terms of
algorithmic modularity and independence of the fluid and structural mechanics solvers and also
better parallel efficiency.

As we discussed in the earlier paragraphs of this section, the space–time FSI techniques de-
veloped by the T�AFSM have been applied to a wide range of 3D computation of FSI problems,
some as early as in 1994 (see [29]) and many with challenging complexities (see, for example,
[31, 33–38, 62, 72]). The enhancements we describe in this paper increase the scope, accuracy,
robustness and efficiency of the FSI techniques developed by the T�AFSM. The aspects of the
FSI solution process enhanced include the DSD/SST formulation, the fluid–structure interface
conditions, the preconditioning techniques used in iterative solution of the linear equation systems,
and a contact algorithm protecting the quality of the fluid mechanics mesh between the struc-
tural surfaces coming into contact. The contact algorithm, which is called the surface-edge-node
contact-tracking (SENCT) technique and is in early stages of its development and testing, was
introduced in [38]. The 3D computation of a rather complex test problem was also reported in
[38]. The SENCT will be described in Section 7 briefly and in another T�AFSM publication in
more detail and with more test computations.

The governing equations are reviewed in Section 2. The finite element formulations, including
the DSD/SST formulation, are described in Section 3. In Section 4 we review the mesh update
techniques, including the SEMMT and MRRMUM. In Sections 5 and 6 we describe the iterative
solution techniques, block-iterative, quasi-direct, and direct coupling techniques, and the precondi-
tioning techniques. The SENCT contact algorithm is described briefly in Section 7. In Sections 8
and 9, for the purpose of comparison and generalization, we briefly describe how the SUPG and
PSPG stabilizations can be extended to the ALE formulation and problems with thermal coupling.
In Section 10, we provide a brief history of the parallel implementations of the space–time FSI
solvers developed by the T�AFSM. A brief history of parachute modelling with those FSI solvers
is provided in Section 11. Numerical examples are presented in Section 12, and the concluding
remarks are given in Section 13.

2. GOVERNING EQUATIONS

2.1. Fluid mechanics

Let �t ⊂Rnsd be the spatial domain with boundary �t at time t ∈ (0, T ). The subscript t indicates
the time dependence of the domain. The Navier–Stokes equations of incompressible flows are
written on �t and ∀t ∈ (0, T ) as

�

(
�u
�t
+ u ·∇u− f

)
−∇ · r= 0 (1)

∇ · u= 0 (2)

where �, u and f are the density, velocity and the external force, respectively. The stress tensor r
is defined as r(p,u)=−pI+ 2�e(u), with e(u)= ((∇u)+ (∇u)T)/2. Here, p is the pressure, I is
the identity tensor, �= �� is the viscosity, � is the kinematic viscosity, and e(u) is the strain-rate
tensor. The essential and natural boundary conditions for Equation (1) are represented as u= g on
(�t )g and n · r=h on (�t )h , where (�t )g and (�t )h are complementary subsets of the boundary
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�t ,n is the unit normal vector, and g and h are given functions. A divergence-free velocity field
u0(x) is specified as the initial condition.

2.2. Structural mechanics

Let �s
t ⊂Rnxd be the spatial domain with boundary �s

t , where nxd = 2 for membranes and nxd = 1
for cables. The superscript ‘s’ indicates the structure. The parts of �s

t corresponding to the essential
and natural boundary conditions are represented by (�s

t )g and (�s
t )h . The equations of motion are

written as

�s
(
d2y
dt2
+ �

dy
dt
− fs

)
−∇ · rs = 0 (3)

where �s , y, fs and rs are the material density, structural displacement, external force and the
Cauchy stress tensor, respectively. Here, � is an artificial-damping coefficient, which is non-zero
only in computations where time accuracy is not required, such as in determining the deformed
shape of the structure for specified fluid mechanics forces acting on it. Such computations typically
precede any fluid mechanics or FSI computations, and the artificial damping facilitates reaching that
initial shape in a robust way. The stresses are expressed in terms of the second Piola–Kirchoff stress
tensor S, which is related to the Cauchy stress tensor through a kinematic transformation. Under
the assumption of large displacements and rotations, small strains, and no material damping, the
membranes and cables are characterized with linearly elastic material properties. For membranes,
under the assumption of plane stress, S becomes:

Si j = (�̄
s
Gi jGkl + �s(GilG jk + GikG jl))Ekl (4)

where for the case of isotropic plane stress �̄
s = 2�s�s/(�s + 2�s). Here, Ekl are the components

of the Cauchy–Green strain tensor, Gi j are the contravariant components of the metric tensor in
the original configuration, and �s and �s are the Lamé constants. For cables, under the assumption
of uniaxial tension, S becomes S11= EcG11G11E11, where Ec is Young’s modulus for the cable.

3. FINITE ELEMENT FORMULATIONS

3.1. DSD/SST formulation of fluid mechanics

In the DSD/SST method [48, 51, 52, 54], the finite element formulation is written over a sequence
of N space–time slabs Qn , where Qn is the slice of the space–time domain between the time
levels tn and tn+1. At each time step, the integrations are performed over Qn . The space–time
finite element interpolation functions are continuous within a space–time slab, but discontinuous
from one space–time slab to another. The notation (·)−n and (·)+n will denote the function values
at tn as approached from below and above. Each Qn is decomposed into elements Qe

n , where
e= 1, 2, . . . , (nel)n . The subscript n used with nel is for the general case where the number of
space–time elements may change from one space–time slab to another. The essential and natural
boundary conditions are enforced over (Pn)g and (Pn)h , the complementary subsets of the lateral
boundary of the space–time slab. The finite element trial function spaces (Sh

u)n for velocity and
(Sh

p)n for pressure, and the test function spaces (Vh
u)n and (Vh

p)n = (Sh
p)n are defined by using,

over Qn , first-order polynomials in space and time.
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The DSD/SST formulation (from [54]) is written as follows: given (uh)−n , find uh ∈ (Sh
u)n and

ph ∈ (Sh
p)n such that ∀wh ∈ (Vh

u)n and ∀qh ∈ (Vh
p)n:∫

Qn

wh · �
(

�uh

�t
+ uh ·∇uh − fh

)
dQ +

∫
Qn

e(wh) : r(ph,uh) dQ

−
∫

(Pn)h
wh · hh dP +

∫
Qn

qh∇ · uh dQ +
∫

�n

(wh)+n · �((uh)+n − (uh)−n ) d�

+
(nel)n∑
e=1

∫
Qe
n

1

�

[
�SUPG�

(
�wh

�t
+ uh ·∇wh

)
+ �PSPG∇qh

]
· [Ł(ph,uh)− �fh] dQ

+
(nel)n∑
e=1

∫
Qe
n

�LSIC∇ · wh�∇ · uh dQ= 0 (5)

where

Ł(qh,wh)= �

(
�wh

�t
+ uh ·∇wh

)
−∇ · r(qh,wh) (6)

This formulation is applied to all space–time slabs Q0, Q1, Q2, . . . , QN−1, starting with (uh)−0 =u0.
Here, �SUPG, �PSPG and �LSIC are the SUPG, PSPG and LSIC (least squares on incompressibil-
ity constraint) stabilization parameters. There are various ways of defining these stabilization
parameters. Here, we provide the definitions given in [54]:

�SUPG=
(

1

�2SUGN12
+ 1

�2SUGN3

)−1/2
(7)

�SUGN12=
( nen∑
a=1

∣∣∣∣�Na

�t
+ uh ·∇Na

∣∣∣∣
)−1

(8)

�SUGN3= h2RGN
4�

(9)

hRGN= 2

( nen∑
a=1
|r ·∇Na|

)−1
(10)

r= ∇‖uh‖
‖∇‖uh‖‖ (11)

�PSPG= �SUPG (12)

�LSIC= �SUPG‖uh‖2 (13)

where nen is the number of (space–time) element nodes and Na is the space–time shape function
associated with the space–time node a. As an alternative to the construction of �SUPG as given by
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Equations (7)–(8), we propose the option of constructing �SUPG based on separate definitions for
the advection-dominated and transient-dominated limits:

�SUPG=
(

1

�2SUGN1
+ 1

�2SUGN2
+ 1

�2SUGN3

)−1/2
(14)

�SUGN1=
( nen∑
a=1
|(uh − vh) ·∇Na|

)−1
(15)

�SUGN2= �t

2
(16)

where vh is the mesh velocity. We note that separating �SUGN12 into its advection-dominated and
transient-dominated components as given by Equations (15)–(16) is equivalent to excluding the
(�Na/�t |n) part of (�Na/�t) in Equation (8), making that the definition for �SUGN1, and accounting
for the (�Na/�t |n) part in the definition for �SUGN2 given by Equation (16). Here, n is the vector of
element (parent-domain) coordinates. We also propose the option of modifying the �LSIC definition
given by Equation (13) to take the mesh velocity into account:

�LSIC= �SUPG‖uh − vh‖2 (17)

For more ways of calculating �SUPG, �PSPG and �LSIC, see [54, 69, 73, 74]. References [54, 69, 74]
also include the discontinuity-capturing directional dissipation (DCDD) stabilization, which was
introduced as an alternative to the LSIC stabilization.

It was remarked in [54, 69, 73–76] that in marching from time level n to n + 1, there are
advantages in calculating the �’s from the flow field at time level n. That is

�← �n (18)

where � is the stabilization parameter to be used in marching from time level n to n + 1, and
�n is the stabilization parameter calculated from the flow field at time level n. One of the main
advantages in doing that, as it was pointed out in [54, 69, 74–76], is avoiding another level of
nonlinearity coming from the way �’s are defined. In general, it is desirable to make �’s less
dependent on short-term variations in the flow field. For this purpose, a recursive time-averaging
approach was proposed in [69, 74] for determining the �’s to be used in marching from time level
n to n + 1:

�← z1�n + z2�n−1 + (1− z1 − z2)� (19)

where �n and �n−1 are the stabilization parameters calculated from the flow field at time levels
n and n − 1, and the � on the right-hand side is the stabilization parameter that was used in
marching from time level n−1 to n. The magnitudes and the number of the ‘averaging parameters’
z1, z2, . . . can be adjusted to create the desired outcome in terms of giving more weight to recently
calculated �s or making the averaging closer to being a trailing average.

In addition, for high-aspect-ratio elements near solid surfaces, we propose the option of setting
r=n. This would spare hRGN from undesirable fluctuations as ‖uh‖ gets smaller and smaller for
elements that become thinner and thinner. By setting r=n we still get the desired outcome from
the computation of hRGN, but without hard wiring the computation for any particular element type
or shape.
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Remark 1
Strictly speaking, the DSD/SST formulation given by Equation (5) was introduced in [54] and is
slightly different from the formulation given in [48, 51]. The two formulations are equivalent if the
stabilization parameters �SUPG and �PSPG are defined to be identical, �LSIC= 0, and ∇ · (�e(wh))

is zero (which will be the case for linear elements) or neglected.

Remark 2
As an alternative to the way the SUPG test function is defined in Equation (5), we propose the SUPG
test function option of replacing (�wh/�t + uh ·∇wh) with ((uh − vh) ·∇wh). This replacement
is equivalent to excluding the (�wh/�t |n) part of (�wh/�t). We call this option ‘WTSE’, and the
option where the (�wh/�t |n) term is active ‘WTSA’.

Remark 3
With the function spaces defined in the paragraph preceding Equation (5), for each space–time slab
velocity and pressure assume double unknown values at each spatial node. One value corresponds
to the lower end of the slab, and the other one upper end. The option of using double unknown
values at a spatial node will be called ‘DV’ for velocity and ‘DP’ for pressure. In this case, we
use two integration points over the time interval of the space–time slab, and this time-integration
option will be called ‘TIP2’. This version of the DSD/SST formulation, with the options set DV,
DP and TIP2, will be called ‘DSD/SST-DP’.

Remark 4
We propose here the option of using, for each space–time slab, a single unknown pressure value at
each spatial node, and we will call this option ‘SP’. With this, we propose another version of the
DSD/SST formulation, where the options set is DV, SP and TIP2, and we will call this version
‘DSD/SST-SP’. Because the number of unknown pressure values is halved, the computational cost
is reduced substantially.

Remark 5
To reduce the computational cost further, we propose the option of using only one integration
point over the time interval of the space–time slab, and we call this time-integration option ‘TIP1’.
With this, we propose a third version of the DSD/SST formulation, where the options set is DV,
SP and TIP1, and we will call this version ‘DSD/SST-TIP1’.

Remark 6
As a third way of reducing the computational cost, we propose the option of using, for each
space–time slab, a single unknown velocity value at each spatial node, and we will call this option
‘SV’. In the SV option, of the two parts of Equation (5), the one generated by (wh)+n is removed,
and we explicitly set (uh)+n = (uh)−n , which makes the velocity field continuous in time. Based on
the SV option, we propose a fourth version of the DSD/SST formulation, where the options set is
SV, SP and TIP1, and we will call this version ‘DSD/SST-SV’. With this version of the DSD/SST
formulation, we propose to use the SUPG test function option WTSE.

Remark 7
In terms of computational cost the DSD/SST-SV formulation would be quite comparable to the
ALE formulations. This makes the DSD/SST-SV formulation very competitive in computational
efficiency.
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Remark 8
Versions DSD/SST-TIP1 and DSD/SST-SV render the DSD/SST versions used earlier obsolete.
For example, the version DSD/SST-DP has twice the number of unknown pressure values and twice
the number of time-integration points compared to DSD/SST-TIP1 and DSD/SST-SV, and is no
longer attractive in terms of computational efficiency. Therefore, we now consider DSD/SST-DP
obsolete. As another example, the version with the option set DV, DP and TIP1 would reduce the
number of time-integration points by half and bring some computational efficiency that way. But
it still would have twice the number of unknown pressure values and generate twice the number
of pressure equations, where half of those equations would be linearly dependent on the other
half. As it can be seen from the numerous computations carried out in the past by the T�AFSM,
because of the iterative nature of the solution process and the special circumstances, this linear
dependency, by itself, does not create a convergence problem. Still, having twice the number of
pressure equations is not computationally efficient and needlessly taking chances with linearly
dependent equation systems is not prudent. Therefore, the version of the DSD/SST formulation
with the option set DV, DP and TIP1 is now obsolete.

3.2. Semi-discrete formulation of structural mechanics

With yh and wh coming from appropriately defined trial and test function spaces, respectively, the
semi-discrete finite element formulation of the structural mechanics equations (see [33, 77, 78]) is
written as

∫
�s
0

wh · �s d
2yh

dt2
d�s +

∫
�s
0

wh · ��s
dyh

dt
d�s +

∫
�s
0

�Eh : Sh d�s

=
∫

�s
t

wh · (th + �sfs) d�s (20)

The fluid mechanics forces acting on the structure are represented by vector th . This force term
is geometrically nonlinear and thus increases the overall nonlinearity of the formulation. The left-
hand side terms of Equation (20) are referred to in the original configuration and the right-hand
side terms in the deformed configuration at time t . From this formulation at each time step we
obtain a nonlinear system of equations. In solving that nonlinear system with an iterative method,
we use an incremental form (see [31, 33, 77, 78]), which is expressed as

[
M

��t2
+ (1− 	)
C

��t
+ (1− 	)K

]
�di =Ri (21)

Here, M is the mass matrix, C is the artificial-damping matrix, K is the consistent tangent matrix
associated with the internal elastic forces, Ri is the residual vector at the i th iteration and �di is
the i th increment in the nodal displacements vector d. The artificial-damping matrix C is used,
as mentioned in Section 2.2, only in computations where time accuracy is not required, and for
spatially constant � it can be written as C= �M. All of the terms known from the previous
iteration are lumped into the residual vector Ri . The parameters 	, �, 
 are part of the Hilber–
Hughes–Taylor [79] scheme, which is the time-integration technique used here.
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3.3. Stabilized space–time fluid–structure interaction (SSTFSI) method

We will describe the SSTFSI method based on the finite element formulations given by Equa-
tions (5) and (20), with a slight change of notation and with a clarification of how the fluid–structure
interface conditions are handled. In this notation subscripts 1 and 2 will refer to fluid and structure,
respectively. Furthermore, while subscript I will refer to the fluid–structure interface, subscript E
will refer to ‘elsewhere’ in the fluid and structure domains or boundaries. Then the equations
representing the SSTFSI method are written as follows:

∫
Qn

wh
1E · �

(
�uh

�t
+ uh ·∇uh − fh

)
dQ +

∫
Qn

e(wh
1E) : r(ph, uh) dQ

−
∫

(Pn)h
wh
1E · hh1E dP +

∫
Qn

qh1E∇ · uh dQ +
∫

�n

(wh
1E)+n · �((uh)+n − (uh)−n ) d�

+
(nel)n∑
e=1

∫
Qe
n

1

�

[
�SUPG�

(
�wh

1E

�t
+ uh ·∇wh

1E

)
+ �PSPG∇qh1E

]
· [Ł(ph,uh)− �fh] dQ

+
(nel)n∑
e=1

∫
Qe
n

�LSIC∇ · wh
1E�∇ · uh dQ= 0 (22)

∫
Qn

qh1I∇ · uh dQ +
(nel)n∑
e=1

∫
Qe
n

1

�
[�PSPG∇qh1I] · [Ł(ph, uh)− �fh] dQ= 0 (23)

∫
(�1I)REF

(wh
1I)
−
n+1 · ((uh1I)−n+1 − uh2I) d�= 0 (24)

∫
(Pn)h

(wh
1I)
−
n+1 · hh1I dP =−

∫
(Pn)h

(wh
1I)
−
n+1 · pn dP +

∫
Qn

2�e((wh
1I)
−
n+1) : e(u) dQ

+
∫
Qn

(wh
1I)
−
n+1 ·∇ · (2�e(u)) dQ (25)

∫
(�2I)REF

wh
2I · (hh2I + (hh1I)A + (hh1I)B) d�= 0 (26)

∫
(�2)0

wh
2 · �2

d2yh

dt2
d�+

∫
(�2)0

wh
2 · ��2

dyh

dt
d�+

∫
(�2)0

�Eh :Sh d�

=
∫

�2

wh
2 · �2fh2 d�+

∫
�2E

wh
2E · hh2E d�+

∫
�2I

wh
2I · hh2I d� (27)
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Here, (�2I)REF and (�2I)REF represent some reference configurations of �2I and �2I, respectively.
In reconciling the slightly modified notation used here with the notation we used in Equations (5)
and (20), we note that �2= �s , fh2 = fs , (�2)0=�s

0, �2=�s
t , and �2I and �2E indicate the partitions

of �2 corresponding to the interface and ‘elsewhere’. We also note that hh2I= th , and (hh1I)A and
(hh1I)B represent the values of hh1I associated with the fluid surfaces above and below the membrane
structure. The symbol hh2E denotes the prescribed external forces acting on the structure in �2E,
which is separate from fh2. In this formulation, (uh1I)

−
n+1, h

h
1I and hh2I (the fluid velocity, fluid stress

and structural stress at the interface) are treated as separate unknowns, and Equations (24)–(26)
can be seen as equations corresponding to these three unknowns, respectively. The structural
displacement rate at the interface, uh2I, is derived from yh .

The formulation above is based on allowing for cases when the fluid and structure meshes
at the interface are not identical. If they are identical, the same formulation can still be used.
If the structure is represented by a 3D continuum model instead of a membrane model, the
formulation above would still be applicable if the domain integrations over �2E and �2I in the
last two terms of Equation (27) are converted to boundary integrations over �2E and �2I. In
such cases, hh2E would represent the prescribed forces acting ‘elsewhere’ on the surface of the
structure.

We note that, for constant viscosity, the term∇·(2�e(u)) in Equation (25) vanishes for tetrahedral
elements and in most cases can be neglected for hexahedral elements. The same statement can
be made also in the context of that term being a part of the expression Ł(ph,uh) appearing in
Equations (22) and (23).

In computations where we account for the porosity of the membrane fabric, we replace
Equation (24) with the following one:

∫
�1I

(wh
1I)
−
n+1 · ((uh1I)−n+1 − uh2I + kPORO(n · hh1I)n) d�= 0 (28)

where kPORO is the porosity coefficient. This coefficient is typically given in units of ‘CFM’. When
a fabric with a porosity coefficient of 1 CFM is subjected to a pressure differential of 1

2 in of water,
the amount of flow crossing is 1 ft3/min across a sample size of 1 ft2, which translates to a normal
velocity of 1 ft/min. In our current implementation, in Equation (28) we take into account only
the pressure component of hh1I.

Remark 9
In FSI computations with membranes and shells, the pressure at the interface has split nodal values
corresponding to the fluid surfaces above and below the membrane or shell structure. We propose
to use such split nodal values for pressure also at the boundaries (i.e. edges) of a membrane
structure submerged in the fluid. Our computations show that this provides additional numerical
stability for the edges of the membrane.

Remark 10
The versions of the SSTFSI method corresponding to the DSD/SST-DP, DSD/SST-SP, DSD/SST-
TIP1 and DSD/SST-SV formulations (see Remarks 3–6) will be called ‘SSTFSI-DP’, ‘SSTFSI-SP’,
‘SSTFSI-TIP1’ and ‘SSTFSI-SV’, respectively.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:855–900
DOI: 10.1002/fld



866 T. E. TEZDUYAR AND S. SATHE

Remark 11
In terms of computational cost the SSTFSI-SV formulation would be quite comparable to the
ALE FSI formulations. This makes the SSTFSI-SV formulation very competitive in computational
efficiency.

Remark 12
Versions SSTFSI-TIP1 and SSTFSI-SV render the SSTFSI versions used earlier obsolete. For
example, the version SSTFSI-DP has twice the number of unknown pressure values and twice the
number of time-integration points compared to SSTFSI-TIP1 and SSTFSI-SV, and is no longer
attractive in terms of computational efficiency. Therefore, we now consider SSTFSI-DP obsolete.
As another example, the SSTFSI version with the option set DV, DP and TIP1 would reduce the
number of time-integration points by half and bring some computational efficiency that way. But
it still would have twice the number of unknown pressure values and generate twice the number
of pressure equations, where half of those equations would be linearly dependent on the other
half. As it can be seen from the numerous computations carried out in the past by the T�AFSM,
because of the iterative nature of the solution process and the special circumstances, this linear
dependency, by itself, does not create a convergence problem. Still, having twice the number of
pressure equations is not computationally efficient and needlessly taking chances with linearly
dependent equation systems is not prudent. Therefore, the version of the SSTFSI formulation with
the option set DV, DP and TIP1 is now obsolete.

4. MESH UPDATE METHODS

The mesh update has two components: moving the mesh for as long as it is possible, and full
or partial remeshing (i.e. generating a new set of elements and sometimes also a new set of
nodes) when the element distortion becomes too high. Provided that at the fluid–solid interfaces
the normal velocities of the mesh and the fluid interface are matched, we can move the mesh
anyway we find most suitable for the purpose of reducing the frequency of remeshing. In general
remeshing requires calling an automatic, unstructured-mesh generator. Reducing the cost associated
with that in 3D applications becomes a major incentive for reducing the frequency of remeshing.
Maintaining the parallel efficiency of the computations is another major incentive for reducing
the frequency of remeshing, because parallel efficiency of most automatic mesh generators is
substantially lower than that of most flow solvers. For example, reducing the frequency of remeshing
to every 10 time steps or less would sufficiently reduce the influence of remeshing in terms
of its added cost and lack of parallel efficiency. In most of the complex flow problems the
T�AFSM computed in the past, the frequency of remeshing was far less than every 10 time
steps. In our current parallel computations on PC clusters, we typically perform the remeshing
on one of the computing nodes, which, with the memory sizes such nodes come with these
days, is powerful enough to generate large meshes. If remeshing does not consist of (full or
partial) regeneration of just the element connectivities but also involves (full or partial) node
regeneration, we need to project the solution from the old mesh to the new one. This involves a
search process, which can be carried out in parallel. Still, the computational cost involved in this, and
the projection errors introduced by remeshing, add more incentives for reducing the frequency of
remeshing.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:855–900
DOI: 10.1002/fld



MODELLING OF FLUID–STRUCTURE INTERACTIONS 867

4.1. Automatic mesh-moving technique

In the automatic mesh-moving technique introduced in [55, 56], the motion of the internal nodes
is determined by solving the equations of elasticity. As the boundary condition, the motion of the
nodes at the fluid–solid interfaces is specified to match the velocity of the fluid interface. Similar
mesh-moving techniques were used earlier by other researchers (see, for example, [80]). In [55, 56]
the mesh deformation is dealt with selectively based on the sizes of the elements. Mesh-moving
techniques with comparable features were later introduced in [58]. In the technique introduced in
[55, 56], selective treatment based on element sizes is attained by altering the way we account for
the Jacobian of the transformation from the element domain to the physical domain. The objective
is to stiffen the smaller elements, which are typically placed near solid surfaces, more than the
larger ones. When this technique was first introduced in [55, 56], it consisted of simply dropping
the Jacobian from the finite element formulation of the mesh-moving (elasticity) equations. This
results in the smaller elements being stiffened more than the larger ones. The method described
in [55, 56] was augmented in [59] to a more extensive kind by introducing a stiffening power that
determines the degree by which the smaller elements are rendered stiffer than the larger ones. This
approach, when the stiffening power is set to 1.0, would be identical to the one first introduced
in [55]. Here, we propose also an option of the automatic mesh-moving technique where the
elements are stiffened proportional to an invariant measure of the shear strain associated with the
mesh deformation. For that invariant measure of the shear strain, we propose to use the second
invariant of the strain deviator tensor.

4.2. Solid-extension mesh-moving technique (SEMMT)

In dealing with fluid–solid interfaces, sometimes we need to generate structured layers of ele-
ments around the solid objects to fully control the mesh resolution there and have more accurate
representation of the boundary layers. In the mesh-moving technique introduced in [55, 56], such
structured layers of elements move ‘glued’ to the solid objects, undergoing a rigid-body motion.
No equations are solved for the motion of the nodes in these layers, because these nodal motions
are not governed by the equations of elasticity. This results in some cost reduction. But more
importantly, the user has full control of the mesh resolution in these layers. For early examples
of automatic mesh-moving combined with structured layers of elements undergoing rigid-body
motion with solid objects, see [56, 81]. Earlier examples of element layers undergoing rigid-body
motion, in combination with deforming structured meshes, can be found in [48].

In computation of flows with fluid–solid interfaces where the solid is deforming, the motion
of the fluid mesh near the interface cannot be represented by a rigid-body motion. Depending on
the deformation mode of the solid, the automatic mesh-moving technique described above may
need to be used. In such cases, the thin fluid elements near the solid surface becomes a challenge
for the automatic mesh-moving technique. In the SEMMT [60, 61], it was proposed to treat those
thin fluid elements almost like an extension of the solid elements. In the SEMMT, in solving
the equations of elasticity governing the motion of the fluid nodes, higher rigidity is assigned to
these thin elements compared to the other fluid elements. Two ways of accomplishing this were
proposed in [60, 61]: solving the elasticity equations for the nodes connected to the thin elements
separate from the elasticity equations for the other nodes, or together. If they are solved separately,
for the thin elements, as boundary conditions at the interface with the other elements, traction-
free conditions would be used. The separate solution option is referred to as ‘SEMMT-multiple
domain (SEMMT-MD)’ and the unified solution option as ‘SEMMT-single domain (SEMMT-SD)’.
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In [82, 83], test computations were presented to demonstrate how the SEMMT functions as part of
the T�AFSM mesh update method. Both SEMMT options described above were employed. The
test computations included mesh deformation tests [82, 83] and a 2D FSI model problem [83].

4.3. Move-reconnect-renode mesh update method (MRRMUM)

The MRRMUM was proposed in [62]. In the MRRMUM (see [38, 62]), two remeshing options
were defined, with each one proposed to be used when it is most effective to do so. In the
‘reconnect’ option, only the way the nodes are connected is changed and thus only the elements
are replaced (fully or partially) with a new set of elements. The mesh generator developed in [84]
provides the reconnect option. In the ‘renode’ option, the existing nodes are replaced (fully or
partially) with a new set of nodes. This, of course, results in also replacing the existing elements
with a new set of elements. Because the reconnect option is simpler and involves less projection
errors, it is preferable to the renode option. In the MRRMUM, we move the mesh for as many
time steps as we can, reconnect only as frequently as we need to, and renode only when doing so
is the only remaining option.

In [62], for the prescribed rigid-body rotation of a parachute, the performances of the two
remeshing options described above were compared. By examining the aerodynamical forces acting
on the parachute in all three directions, performances of remeshing with the ‘reconnect’ and ‘renode’
options were evaluated. The evaluations showed that the force oscillations seen immediately after
the remeshing are reduced substantially with the ‘reconnect’ option.

4.4. ‘Pressure clipping’

‘Pressure clipping’ was introduced in [85] for the purpose reducing the pressure ‘spikes’ typically
encountered after the mesh-to-mesh projection following a remeshing. After such a projection, the
incompressibility constraint is slightly violated, but it is recovered at the next nonlinear iteration.
However, at that nonlinear iteration, the pressure, as it performs its duty of ‘enforcing’ the constraint,
changes more than it should. Therefore, in the time step following a remeshing, in calculating the
fluid mechanics forces at the fluid–solid interface, we propose to use ‘clipped’ pressure values.
The ‘clipped’ values are obtained by the least-squares projection from the pressure values prior
to remeshing. We also propose to use those ‘clipped’ values as the initial guess for the nonlinear
iterations of the subsequent time step. Using the ‘pressure clipping’ in conjunction with the
MRRMUM should further improve the quality of the solution improved by using, whenever we
can, the ‘reconnect’ option of remeshing.

4.5. FSI geometric smoothing technique (FSI-GST)

For computations where the geometric complexity of the structure at the interface would require
a fluid mechanics mesh that is not affordable or not desirable or just not manageable in mesh
moving, we propose the FSI geometric smoothing technique (FSI-GST). In this technique, the
structural mesh and displacement rates at the interface are projected to the fluid mesh after a
geometric smoothing. In the geometric smoothing, a value (mesh coordinate or displacement rate)
at a given node is replaced by a weighted average of the values at that node and a limited set of
nearby nodes. When projecting the stress values from the smoothened interface to the structure,
currently we propose to just transfer those values to the corresponding nodes of the structure. In
some computations, we may need not an isotropic geometric smoothing but a directional smoothing
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along some preferred direction. For such computations, we propose, as a version of the FSI-GST,
the FSI directional geometric smoothing technique (FSI-DGST). We propose to, whenever we
can, generate the interface mesh in such a fashion that the preferred smoothing directions can
approximately be represented by the gridlines of the interface mesh. Then the weighted averaging
for a node on such a gridline would involve a limited set of nearby nodes only along that gridline.
The directional smoothing concept is similar to the directional ‘upwind’ concept of the SUPG
formulation, where the residual-based numerical dissipation is active only along the streamline
direction.

5. SOLUTION OF THE FULLY DISCRETIZED COUPLED EQUATIONS

Full discretization of the FSI formulation described in Section 3.3 leads to coupled, nonlinear
equation systems that need to be solved at every time step. In a conceptual form that is partitioned
with respect to the models represented, such nonlinear equation systems can be written as follows:

N1(d1, d2,d3)=F1 (29)

N2(d1, d2,d3)=F2 (30)

N3(d1, d2,d3)=F3 (31)

where d1, d2 and d3 are the vectors of nodal unknowns corresponding to generic unknown functions
u1, u2 and u3, respectively. In the context of an FSI problem, the generic functions u1, u2 and u3
represent the fluid, structure and mesh unknowns, respectively. For the space–time formulation of
the fluid mechanics problem, d1 represents unknowns associated with the finite element formulation
written for the space–time slab between the time levels n to n + 1 (see [48, 51, 52, 54]). Solution
of these equations with the Newton–Raphson method would necessitate at every Newton–Raphson
step solution of the following linear equation system:

A11x1 + A12x2 + A13x3=b1 (32)

A21x1 + A22x2 + A23x3=b2 (33)

A31x1 + A32x2 + A33x3=b3 (34)

where b1, b2 and b3 are the residuals of the nonlinear equations, x1, x2 and x3 are the correction
increments for d1, d2 and d3, and A�
= �N�/�d
.

Remark 13
In FSI computations with a fluctuating traction boundary condition at the outflow, to improve the
convergence of the nonlinear iterations, we propose to calculate the initial guess for pn+1 with the
expression (pn+1)0= pn + (�pOUTF)n . In this expression, (�pOUTF)n is a measure of the change
in the outflow traction from time level n to n + 1.

5.1. Block-iterative coupling

In the block-iterative coupling [35–37, 67–71], the fluid, structure and mesh systems are treated as
separate blocks, and the nonlinear iterations are carried out one block at a time. In solving a block
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of equations for the block of unknowns it is associated with, we use the most current values of
the other blocks of unknowns. Assuming a cyclic order of 1→ 2→ 3, in an iteration step taking
us from iterative solution i to i + 1, the following three blocks of equations are solved:

�N1

�d1

∣∣∣∣
(di1,d

i
2,d

i
3)

(�di1)=F1 − N1(di1,d
i
2, d

i
3) (35)

�N2

�d2

∣∣∣∣
(di+11 ,di2,d

i
3)

(�di2)=F2 − N2(d
i+1
1 , di2,d

i
3) (36)

�N3

�d3

∣∣∣∣
(di+11 ,di+12 ,di3)

(�di3)=F3 − N3(d
i+1
1 ,di+12 , di3) (37)

Each of the three blocks of linear equations systems given by Equations (35)–(37) is also solved
iteratively, using the GMRES search technique [86]. In the block-iterative implementation of the
T�AFSM, at each time step the cycle starts with block number 2 (i.e. 2→ 3→ 1→ 2→ 3→ 1 . . .).

In FSI computations where the structure is light, structural response becomes very sensitive
to small changes in the fluid mechanics forces. In such cases, when the coupling between the
three blocks of equations given by Equations (32)–(34) is handled with a block-iterative coupling
technique rather than a direct coupling technique, convergence becomes difficult to achieve. In
Sections 5.2 and 5.3 we describe ‘more direct’ techniques for handling the coupling. A shortcut
approach was proposed in [67–69] (and was also described in [35–37, 70, 71]) for improving the
convergence of the block-iterative coupling technique. In this approach, to reduce ‘over-correcting’
(i.e. ‘over-incrementing’) the structural displacements during the block iterations, the mass matrix
contribution to A22 is increased. This is achieved without altering b1, b2 or b3 (i.e. without altering
F1 − N1(d1,d2,d3), F2 − N2(d1,d2,d3) or F3 − N3(d1,d2,d3)), and therefore when the block
iterations converge, they converge to the solution of the problem with the correct structural mass.

5.2. Quasi-direct coupling

In the quasi-direct coupling [35–37], the fluid+ structure and mesh systems are treated as two
separate blocks, and the nonlinear iterations are carried out one block at a time. In solving a block
of equations for the block of unknowns it is associated with, we use the most current values of
the other block of unknowns. In an iteration step taking us from iterative solution i to i + 1, the
following two blocks of equations are solved:

�N1

�d1

∣∣∣∣
(di1,d

i
2,d

i
3)

(�di1)+
�N1

�d2

∣∣∣∣
(di1,d

i
2,d

i
3)

(�di2)=F1 − N1(di1,d
i
2,d

i
3) (38)

�N2

�d1

∣∣∣∣
(di1,d

i
2,d

i
3)

(�di1)+
�N2

�d2

∣∣∣∣
(di1,d

i
2,d

i
3)

(�di2)=F2 − N2(di1,d
i
2,d

i
3) (39)

�N3

�d3

∣∣∣∣
(di+11 ,di+12 ,di3)

(�di3)=F3 − N3(d
i+1
1 ,di+12 , di3) (40)

Each of the two blocks of linear equations systems given by Equations (38)–(39) and Equation (40)
is also solved iteratively, using the GMRES search technique.
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Remark 14
In the iterative solution of the combined fluid+structure (i.e. 1+ 2) block with the GMRES search
technique and a diagonal preconditioner, depending on the nature of the problem, one of these two
parts might pose a greater convergence challenge than the other one. The convergence challenges
might be created by an incompressibility constraint, having thin or shallow computational domains,
or some other factors. The scaling provided by diagonal preconditioning is unlikely to remedy such
disparities in the convergence challenges offered by the two parts, which are typically exhibited
as disparities in the residual-decay rates for the two parts rather than disparities in the residual
magnitudes. In some cases, the scaling provided by diagonal preconditioning might not even be
able to properly account for the disparities in the residual magnitudes corresponding to the fluid
and structure parts. Here, we propose ‘selective scaling’ to place, in GMRES iterations, greater
emphasis on the part posing greater convergence challenge. With this additional scaling (beyond
diagonal preconditioning), in constructing the Krylov vectors of the GMRES search technique,
the relative weights given to the residual vectors associated with the fluid and structure parts are
determined based on the relative convergence challenges posed by those two parts. We propose to
determine those relative weights on a case-by-case basis as well as on a more automated basis,
where the weights increase with decreasing residual-decay rates.

5.3. Direct coupling

In the direct coupling [35–37], the fluid + structure + mesh system is treated as a single block,
and the linear equation system given by Equations (32)–(34) is solved iteratively:

P11z1 + P12z2 + P13z3=b1 − (A11x1 + A12x2 + A13x3) (41)

P21z1 + P22z2 + P23z3=b2 − (A21x1 + A22x2 + A23x3) (42)

P31z1 + P32z2 + P33z3=b3 − (A31x1 + A32x2 + A33x3) (43)

where P�
’s represent the blocks of the preconditioning matrix P. The most computing-intensive
part here is the evaluation of the matrix–vector products of the form A�
x
 (for �, 
= 1, 2, . . . , N
and no sum). In the FSI computations carried out by the T�AFSM, those evaluations are performed
with the element-vector-based (EVB) computation techniques (see [57, 69, 71, 87, 88]), which do
not require computation of any matrices, not even at the element level. The EVB computations can
be carried out in two ways: numerical EVB (NEVB) and analytical EVB (AEVB) computations.

5.3.1. NEVB computations. In the NEVB computation technique, which is also called the matrix-
free computation technique (see [87, 88]), a matrix–vector product of the form Ax, which is the
directional derivative of N in x direction, is evaluated by the expression:

Ax= nel
A
e=1

[
Ne(d+ εx)− Ne(d)

ε

]
(44)

where Ne is the element-level vector representing the contribution of element e to N, and ε is a
small parameter used in the numerical calculation of the limit representing the directional deriva-
tive. This concept was extended in [57, 69, 71] to FSI computations, where we need to evaluate
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the matrix–vector products of the form A�
x
:

A�
x
=
nel
A
e=1

[
Ne

�(. . . ,d
 + ε�
x
, . . .)− Ne
�(. . . ,d
, . . .)

ε�


]
(45)

where Ne
� is the element-level vector representing the contribution of element e to N�, and ε�
 is

the limit-evaluation parameter selected for the unknown set 
 in the equation set �. If we decide
to use a single limit-evaluation parameter ε� for all the unknown sets in the equation set �, then
the computations can be carried out as

N∑

=1

A�
x
=
nel
A
e=1

[
Ne

�(d+ ε�x)− Ne
�(d)

ε�

]
(46)

Remark 15
Using a single limit-evaluation parameter for all the unknown sets in the equation set � would be
computationally more economical. On the other hand, using a different limit-evaluation parameter
for each unknown set would give us the option of taking separately into account the dependence of
N� on each unknown d
, including how �N�/�d
 varies with d
. This is an important consideration
because of the multi-physics and multi-scale nature of FSI computations.

5.3.2. AEVB computations. The AEVB computation technique (see [57, 69, 71]) can be used for
evaluating the matrix–vector products of the form A�
x
 if deriving expressions for such matrix–
vector products is not painful and we prefer not to deal with limit-evaluation parameters and
numerical evaluation of directional derivatives.

Let us suppose that the nonlinear vector function N� corresponds to a finite element integral form
B�(W�, u1, . . . , uN ). Here W� represents the vector of nodal values associated with the weighting
function w�, which generates the nonlinear equation block �. Let us also suppose that we are able
to, without major difficulty, derive the expressions for the first-order terms in the expansion of
B�(W�, u1, . . . , uN ) in u
. Those first-order terms in �u
 will be represented by the finite element
integral form G�
(W�,u1, . . . , uN ,�u
). For example, G11(W1, u1, . . . ,uN , �u1) will represent
the first-order terms obtained by expanding the finite element formulation of the fluid mechanics
equations (i.e. momentum equation and incompressibility constraint) in fluid mechanics unknowns
(i.e. fluid velocity and pressure). We note that the integral form G�
 will generate �N�/�d
.
Consequently, as it was pointed out in [57, 69, 71], the product A�
x
 can be evaluated as follows:

A�
x
= �N�

�d

x
=

nel
A
e=1

G�
(W�,u1, . . . , uN , v
) (47)

where v
 is a function interpolated from x
 in the same way u
 is interpolated from d
.
In the mixed AEVB/NEVB computation technique [57, 69, 71], in evaluation of A�
x
 for each

combination of � and 
, depending on the nature of what is involved in that particular evaluation,
one can select between the AEVB and NEVB computation techniques. In the direct coupling
[35–37, 71], the matrix–vector product A13x3 is computed with the NEVB technique:

A13x3=
nel
A
e=1

[
Ne
1(d1,d2,d3 + ε13x3)− Ne

1(d1,d2, d3)

ε13

]
(48)
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Remark 16
Remark 14, with the wording expanded to the combined fluid+ structure+mesh (i.e. 1+ 2+ 3)
system, becomes applicable to the direct coupling.

6. SEGREGATED EQUATION SOLVERS

To simplify the context for the fundamental concepts of this section, let us first consider only the
Navier–Stokes equations of incompressible flows, without any structure. The stabilized formulation
given by Equation (5) leads to a nonlinear equation system that needs to be solved at every time
step. In a form that is partitioned (segregated) with respect to velocity and pressure, that nonlinear
equation system can be written as follows:

NU(dU, dP)=FU (49)

NP(dU, dP)=FP (50)

where dU and dP are the vectors of nodal unknowns corresponding to velocity and pressure,
respectively. Solution of this nonlinear equation system with the Newton–Raphson method would
necessitate at every Newton–Raphson step solution of the following linear equation system:

AUUxU + AUPxP=bU (51)

APUxU + APPxP=bP (52)

where bU and bP are the residuals of the nonlinear equations, xU and xP are the correction
increments for dU and dP, and A�
= �N�/�d
, with �, 
 =U, P.

6.1. Segregated equation solver for nonlinear systems (SESNS)

The SESNS technique originates from the segregated solvers reported in [47–49, 89, 90]. In [47],
a segregated solver was first used with the SUPG formulation based on elements with bilinear
velocity and constant pressure. The overly dissipative nature of the one-step SUPG formulation
with constant pressure motivated the introduction of the multi-step SUPG formulations reported
in [89], where the segregated solution approach was extended to multi-step methods. In [90],
segregated solvers were provided for the SUPG formulation based on elements with higher-order
interpolations for velocity and pressure, in the context of both one-step and multi-step formulations.
In [48, 49], a segregated solver was provided for the SUPG/PSPG formulation based on elements
with equal-order interpolations for velocity and pressure, where, because of the PSPG stabilization,
the submatrix APP was no longer zero.

In SESNS, instead of solving the equation system given by Equations (51)–(52) in its given
form, we solve its approximate version where AUU is approximated by a diagonal matrix DUU:

DUUxU + AUPxP=bU (53)

APUxU + APPxP=bP (54)

where DUU=DIAG(AUU). From Equations (53)–(54), we obtain the following sets of equations:

xU + D
−1
UUAUPxP=D

−1
UUbU (55)
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(APUD
−1
UUAUP − APP)xP=APUD

−1
UUbU − bP (56)

Equation (56) can be solved iteratively with the GMRES method. After solving Equation (56) for
xP, we substitute that solution into Equation (55) and compute xU. Doing this twice would be
similar to using a predictor/multi-corrector algorithm with two passes. With two passes, we can
get second-order accuracy in time, but, because of stability considerations, we still would have a
limit on the time-step size.

6.2. Segregated equation solver for linear systems (SESLS)

In SESLS, we do not replace the equation system given by Equations (51)–(52) with its approximate
version. We solve it with preconditioned iterations. By using the concepts we used in Equations
(41)–(43) and a comparable notation, we write the iterative solution of Equations (51)–(52) as
follows:

PUUzU + PUPzP=bU − (AUUxU + AUPxP) (57)

PPUzU + PPPzP=bP − (APUxU + APPxP) (58)

We define:

rU=bU − (AUUxU + AUPxP) (59)

rP=bP − (APUxU + APPxP) (60)

select the preconditioning matrix blocks as

PUU=DUU, PUP=AUP (61)

PPU=APU, PPP=APP (62)

and rewrite Equations (57)–(58) as follows:

DUUzU + AUPzP= rU (63)

APUzU + APPzP= rP (64)

Now, we do to Equations (63)–(64) exactly what we did to Equations (53)–(54) and obtain:

zU + D
−1
UUAUPzP=D

−1
UUrU (65)

(APUD
−1
UUAUP − APP)zP=APUD

−1
UUrU − rP (66)

Equation (66) can be solved iteratively with the GMRES method. We will call these iterations
‘sub-level’ (or ‘lower’) iterations. After solving Equation (66) for zP, we substitute that solution
into Equation (65) and compute zU. This completes the solution of Equations (63)–(64), which is
equivalent to applying the preconditioner defined by Equations (61)–(62) in the iterative solution
of Equations (51)–(52).

The SESLS is simply an extension of the SESNS concept to the linear equation systems that
need to be solved at every Newton–Raphson step. For more sophisticated iterations techniques
with sub-levels, see [91, 92].
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6.3. Segregated equation solver for fluid–structure interactions (SESFSI)

The SESFSI is based on extending the SESLS concept to FSI computations. In describing this
solver, for the identification of the equation and unknown blocks, we will use an expanded notation
that will remain local to this subsection. The vectors x, b, z and r are defined as

x=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xE

xI

xY

xS

xF

xH

xP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bE

bI

bY

bS

bF

bH

bP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, z=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

zE

zI

zY

zS

zF

zH

zP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rE

rI

rY

rS

rF

rH

rP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(67)

where the index translation is given in Table I.
The matrix A is expressed as follows:

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

AEE AEI AEP

AII AIY AIP

AYY AYS AYF

ASY ASS

AFF AFH

AHE AHI AHH AHP

APE API APP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(68)

We note that the matrix AIP is generated by the porosity term, when in Equation (28) we take into
account only the pressure component of hh1I. If we take into account hh1I fully, then the coupling
matrix generated would be AIH instead of AIP.

Table I. SESFSI index translation.

E All other fluid velocities
I Fluid velocity (uh1I)

−
n+1 at the interface

Y Structural displacements at the interface
S All other structural displacements
F Interface stresses acting on the structure
H Interface stresses acting on the fluid
P Fluid pressure
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Now, similar to what we did by means of Equations (61)–(62), we define various preconditioner
options for the SESFSI. The first one is a very simple preconditioner, and we will call that PSIMP:

PSIMP=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DEE 0 AEP

LII 0 0

DYY 0 0

0 DSS

LFF 0

0 0 LHH 0

APE API APP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(69)

where DEE=DIAG(AEE), LII=LUMP(AII), DYY=DIAG(AYY), DSS=DIAG(ASS), LFF=
LUMP(AFF), LHH=LUMP(AHH), and the operator ‘LUMP’ represents the matrix-lumping oper-
ation. We note that the replacement of AIP by 0 constitutes an approximation only if the structure
has porosity.

The second preconditioner is an augmented version, in the sense that, compared to PSIMP, it
includes more of the coupling matrices, and we will call that PAUGM:

PAUGM=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DEE 0 AEP

LII 0 AIP

DYY 0 AYF

0 DSS

LFF 0

AHE AHI LHH 0

APE API APP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(70)

The third preconditioner, compared to PSIMP, includes the coupling matrices that lead to a more
direct treatment of the projections, and we will call that PDPRO:

PDPRO=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DEE 0 AEP

LII BIY 0

DYY 0 0

0 DSS

LFF BFH

0 0 LHH BHP

APE API APP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(71)
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To define BIY and BFH, we first consider the number of nodal points in blocks E, I, Y, S, F, H and
P, and denote them by (nn)E, (nn)I, (nn)Y, (nn)S, (nn)F, (nn)H and (nn)P, respectively.

If (nn)I<(nn)Y, for each node in Block I, we select the nearest node in Block Y, with the
condition that a node in Block Y can be selected only once as the nearest node. We use the index
YI to denote the part of Block Y associated with that set of nodes. We use the index YO to denote
the part of Block Y associated with the other (i.e. remaining) nodes in Block Y. Based on this, we
partition DYY into DYIYI and DYOYO. With that, we define BIY as follows:

(
LII BIY

DYY

)
=

⎛
⎜⎜⎝
LII −LII 0

DYIYI

DYOYO

⎞
⎟⎟⎠ for (nn)I<(nn)Y (72)

If (nn)I>(nn)Y, for each node in Block Y, we select the nearest node in Block I. Index IY denotes
the part of Block I associated with that set of nodes, and index IO denotes the part of Block I
associated with the other nodes in Block I. Based on this, we partition LII into LIYIY and LIOIO.
With that, we define BIY as follows:

(
LII BIY

DYY

)
=

⎛
⎜⎜⎝
LIOIO 0

LIYIY −LIYIY

DYY

⎞
⎟⎟⎠ for (nn)I > (nn)Y (73)

Using the nearest-node concept, if (nn)F<(nn)H, we partition Block H into blocks HF and HO,
partition LHH into LHFHF and LHOHO, and define BFH as follows:

(
LFF BFH

LHH

)
=

⎛
⎜⎜⎝
LFF −LFF 0

LHFHF

LHOHO

⎞
⎟⎟⎠ for (nn)F<(nn)H (74)

If (nn)F>(nn)H, we partition Block F into blocks FH and FO, partition LFF into LFHFH and LFOFO,
and define BFH as follows:

(
LFF BFH

LHH

)
=

⎛
⎜⎜⎝
LFOFO 0

LFHFH −LFHFH

LHH

⎞
⎟⎟⎠ for (nn)F>(nn)H (75)

To define BHP, we first partition Block H into blocks H1–H3 (corresponding to the three spatial
directions) and partition LHH into LH1H1, LH2H2 and LH3H3. We note that LH2H2=LH1H1 and
LH3H3=LH1H1. We also partition Block P into blocks PH and PD (corresponding to the nodal
values of the pressure at the interface and elsewhere in the fluid domain) and partition APP into
APHPH, APHPD, APDPH and APDPD. In addition, we define three diagonal matrices D1, D2 and D3,
representing the three spatial components of the unit normal vectors at the interface nodes. These
diagonal matrices are defined as

D j =[(nA) j�AB] (no sum), j = 1, 2, 3 (76)
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where �AB are the components of the identity tensor, and (nA) j is the j component of the unit
normal vector at the interface node A. With that, we define BHP as follows:

(
LHH BHP

APP

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

LH1H1 −LH1H1D1

LH2H2 −LH2H2D2

LH3H3 −LH3H3D3

APHPH APHPD

APDPH APDPD

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(77)

7. SURFACE-EDGE-NODE CONTACT TRACKING (SENCT)

The SENCT technique was introduced in [38] as a contact algorithm. In this technique, which is
in early stages of its development and testing, the objective is to prevent the structural surfaces
from coming closer than a predetermined minimum distance we would like to maintain to protect
the quality of the fluid mechanics mesh between the structural surfaces.

The contact detection is based on searching and calculating for each node the projection distance
from that node to all the structural surface elements (‘surfaces’), edges and nodes. During this
search, we check to see if that projection distance is smaller than the minimum distance we would
like to maintain between the structural surfaces. If it is, then we declare that surface or edge or
node to be a contact surface or edge or node for the node we are conducting the search for. We note
that for each node we are conducting a search for, the predetermined minimum distance between
the structural surfaces is calculated locally (i.e. based on the local length scales related to that
node).

The search algorithm involves some exclusion criteria. For example, edges belonging to contact
surfaces are excluded, and the nodes belonging to contact surfaces or edges are excluded. The
search algorithm also involves some more obvious exclusion criteria. For example, we exclude
the surfaces containing the node we are conducting the search for, and exclude the edges and
nodes that belong to the surface that also contains the node we are conducting the search for. The
surfaces, edges and nodes beyond a certain distance from the node we are conducting the search
for are excluded from the projection distance calculations, because they are not expected to be
candidates for a contact surface or edge or node. The contact detection search is conducted at
every ntsbcd time steps, a parameter specified by the user. Once all the contact surfaces, edges and
nodes are identified for the ‘contacted node’ (i.e. the node we were conducting the search for),
the nodes belonging to those surfaces, edges and nodes are declared to be the ‘contact-node set’
for the contacted node.

We proposed two variations of the SENCT technique in [38]. In the SENCT-force (SENCT-F)
technique, the contacted node is subjected to penalty forces that are inversely proportional to
the projection distances to the contacting surfaces, edges and nodes. In the SENCT-displacement
(SENCT-D) technique, the displacement of the contacted node is adjusted to correlate with the
motion of the contacting surfaces, edges and nodes. There are various ways of accomplishing that.
For example, at every time step, the contacted node can be allowed to move for a certain number
of nonlinear iterations without any contact restrictions, followed by some more nonlinear iterations
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where the motion of the contacted node is set to the mean displacement of the contact-node set.
If the displacement of the contacted node at the end of the first set of nonlinear iterations shows
that it no longer qualifies as a contacted node, then during the next set of nonlinear iterations the
node is allowed to move without any contact restrictions.

8. ALE FORMULATION WITH SUPG AND PSPG STABILIZATIONS

As it was pointed out in Remark 11, in terms of computational cost the SSTFSI-SV formulation
would be quite comparable to the ALE FSI formulations. For completeness, we provide here a
stabilized ALE formulation of the Navier–Stokes equations of incompressible flows, where the
stabilization is based on the SUPG and PSPG methods. In ALE FSI computations, the formula-
tion we provide here would replace the fluid mechanics parts of the SSTFSI formulation given
in Section 3.3. Many of the equations in that section would, in substance, remain the same,
with proper modifications reflecting the change from a space–time context to a semi-discrete
context.

The ALE formulation with the SUPG and PSPG stabilizations can be written as follows:

∫
�t

wh · �
(

�uh

�t

∣∣∣∣
n
+ (uh − vh) ·∇uh − fh

)
d�+

∫
�t

e(wh) : r(ph,uh) d�

−
∫

(�t )h

wh · hh d�+
∫

�t

qh∇ · uh d�

+
nel∑
e=1

∫
�e
t

1

�

[
�SUPG�(uh − vh) · ∇wh + �PSPG∇qh

]
· [Ł(ph,uh)− �fh] d�

+
nel∑
e=1

∫
�e
t

�LSIC∇ · wh�∇ · uh d�= 0 (78)

where

Ł(qh,wh)= �

(
�wh

�t

∣∣∣∣
n
+ (uh − vh) ·∇wh

)
−∇ · r(qh,wh) (79)

and the stabilization parameters are given by Equations (14)–(16), (9), (12) and (17).

9. THERMAL COUPLING

In computations with thermal coupling, the momentum equation given by Equation (1) would be
replaced with the equation

�

(
�u
�t
+ u ·∇u− (1− �T(T − Tref))aGRAV

)
−∇ · r= 0 (80)
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where the temperature T is governed by the following equation:

�Cp

(
�T
�t
+ u ·∇T

)
−∇ · (�∇T )= 0 (81)

Here, �T is the coefficient of thermal expansion, Tref is a reference temperature, aGRAV is the
gravitational acceleration,Cp is the constant-pressure specific heat and � is the thermal conductivity.
For ideal gases, �T= 1/T , with T in the expression representing the absolute temperature. This
expression is not valid for water, and the �T values need to be extracted from tabulated data for
water. In computations, we propose to use a polynomial representation of that data, expressed as
a function of temperature, for the expected temperature range T1�T�T2. A simple way would be
to use a quadratic polynomial

�T(T )= (�T)1 + b1(T − T1)+ b2(T − T1)
2 (82)

where (�T)1= �T(T1), and the coefficients b1 and b2 are determined by a least-squares fit to the
data tabulated for the range T1�T�T2.

We write the stabilized formulations in the context of the ALEmethod. The stabilized formulation
corresponding to Equation (80) can be written as

∫
�t

wh · �
(

�uh

�t

∣∣∣∣
n
+ (uh − vh) ·∇uh − (1− �T(T h − Tref))aGRAV

)
d�

+
∫

�t

e(wh) : r(ph, uh) d�−
∫

(�t )h

wh · hh d�+
∫

�t

qh∇ · uh d�

+
nel∑
e=1

∫
�e
t

1

�
[�SUPG�(uh − vh) · ∇wh + �PSPG∇qh]

· [Ł(ph, uh)− �(1− �T(T h − Tref))aGRAV] d�

+
nel∑
e=1

∫
�e
t

�LSIC∇ · wh�∇ · uh d�+ SDC= 0 (83)

where the stabilization parameters are again given by Equations (14)–(16), (9), (12) and (17). The
symbol SDC represents the discontinuity-capturing term, which is helpful in computations with
thermal coupling, especially for the equation governing the temperature. For the Navier–Stokes
equations the discontinuity-capturing term is given as

SDC=
nel∑
e=1

∫
�e
t

�∇wh : (mDC ·∇uh) d� (84)

where mDC is the discontinuity-capturing parameter. For examples of ways of calculating this
parameter, including the DCDD parameter, see [54, 69, 74, 75]. We note that the DCDD stabilization
was originally introduced as an alternative to the LSIC stabilization, and therefore normally only
one of these stabilizations should be retained.
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The stabilized formulation corresponding to Equation (81) can be written as

∫
�t

wh�Cp

(
�T h

�t

∣∣∣∣
n
+
(
uh − vh

)
·∇T h

)
d�

+
∫

�t

∇wh · �∇T h d�−
∫

(�t )h

whhh d�

+
nel∑
e=1

∫
�e
t

(�SUPG)T(uh − vh) ·∇wh

×
(

�Cp

(
�T h

�t

∣∣∣∣
n
+
(
uh − vh

)
·∇T h

)
−∇ ·

(
�∇T h

))
d�

+ (SDC)T= 0 (85)

where

(SDC)T=
nel∑
e=1

∫
�e
t

∇wh · jDC∇T h d� (86)

The stabilization parameters are defined as follows:

(�SUPG)T=
(

1

((�SUGN1)T)2
+ 1

((�SUGN2)T)2
+ 1

((�SUGN3)T)2

)−1/2
(87)

(�SUGN1)T= �SUGN1 (88)

(�SUGN2)T= �SUGN2 (89)

(�SUGN3)T= ((hRGN)T)2

4(�/(�Cp))
(90)

(hRGN)T= 2

( nen∑
a=1
|rT ·∇Na|

)−1
(91)

rT= ∇T h

‖∇T h‖ (92)

For early examples of ways of calculating jDC, see [93, 94]. Newer examples of ways of calcu-
lating jDC are those based on the DCDD stabilization [54, 69, 74, 75] and ‘Y Z� shock-capturing’
[68, 69, 74, 95] techniques (the ‘�’ in Y Z� shock-capturing is not related to the �T representing
the coefficient of thermal expansion).

For completeness, we describe here how the Y Z� shock capturing and DCDD stabilization
techniques can be applied to the calculation of jDC. We can define jDC as jDC= �Cp(�DC)TI or
as jDC= �Cp(�DC)TrTrT or in some more complex way, such as by using ‘switch’ functions, as
described in [68, 69, 74].
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Based on Y Z� shock capturing (with �= 2), (�DC)T can be calculated by using the expression

(�DC)T= (�YZ�)T=
∣∣∣∣∣Y−1

(
�T h

�t

∣∣∣∣
n
+ (uh − vh) ·∇T h

)∣∣∣∣∣
(

(hRGN)T

2

)2

(93)

where Y is a scaling value for T , which can be selected as Y = Tmax − Tmin.
Based on DCDD stabilization, (�DC)T can be calculated by using the expression

(�DC)T= (�DCDD)T=‖uh − vh‖
(

(hRGN)T

2

) ‖∇T h‖(hRGN)T

(�T )ref
(94)

where (�T )ref is a reference value for �T , which can be selected as (�T )ref= Y .

10. PARALLEL IMPLEMENTATIONS

The T�AFSM’s parallel implementations of their FSI algorithms, including the fluid mechanics,
structural mechanics, mesh-moving and mesh-to-mesh projection components, are based on their
earlier parallel implementations (see [55, 81, 96–104]) of T�AFSM’s semi-discrete flow solvers,
space–time flow solvers for moving boundaries and interfaces, mesh-moving methods and mesh-to-
mesh projection techniques. Various aspects of the implementations of the flow solvers and mesh-
to-mesh projection techniques were extensively described in several of the references listed above,
and the implementation of the mesh-moving methods is essentially a subset of the implementation
of the semi-discrete flow solvers. The implementation of the T�AFSM space–time FSI algorithm
was described in [31] in the context of parallel computation of parachute FSI. The description
was less extensive than the earlier, published descriptions of the T�AFSM’s semi-discrete and
space–time flow solvers, mesh-moving methods, and mesh-to-mesh projection techniques. This
is because the parallel implementation of the additional component (structural mechanics solver)
was, as it was stated in [31], ‘essentially identical’ to the implementation of the flow solver. In
fact, the T�AFSM accomplished that parallel implementation by simply starting with a parallel,
semi-discrete flow solver developed earlier by the T�AFSM, and importing into it the ingredients
of the structural mechanics algorithm [77, 78] from an existing, non-parallel structural mechanics
solver [78]. The fully parallel T�AFSM space–time FSI solver, in its various algorithmic forms,
was used extensively for parachute FSI computations, and those computations were reported in
a large number of journal papers (see, for example, [33, 34, 36, 37, 65, 66, 105, 106]), conference
papers and PhD theses. In all those papers and theses, the parallel computations reported were
based on parallel implementation of all main components of the FSI solver, including the structural
mechanics component.

11. PARACHUTE MODELLING

The earliest applications of the DSD/SST formulation to parachute FSI modelling were reported
by the T�AFSM in a 1997 AIAA paper [30]. These were axisymmetric computations focusing
on the inflation of the parachute and were carried out on parallel computers. The 3D parachute
FSI computations reported by the T�AFSM following that were also all carried out on parallel
computers, using fully parallel FSI solvers (see Section 10), based on the DSD/SST formulation
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and the mesh update methods (see Section 4) developed by the T�AFSM. We will mention here
some of those 3D computations reported earlier.

Computations for a ram-air parachute were reported in [31], together with a description of
the parallel implementation of the T�AFSM space–time FSI algorithm. Modelling of a round
parachute with emphasis on performance and control was reported in [32, 33]. Computations for
a cross parachute and comparison of numerical predictions with wind-tunnel data were reported
in [64, 65]. Computation of a round parachute crossing the far wake of an aircraft was reported
in [34]. Modelling of a round parachute with emphasis on soft landing was reported in [66].
Computations of the aerodynamic interactions between multiple parachute canopies were reported
in [70, 105, 106].

The parachute computations mentioned in this section so far were based on the block-iterative
coupling technique (see Section 5.1). The quasi-direct and direct coupling techniques (see Sections
5.2 and 5.3) introduced in a January 2004 conference paper [35] brought the T�AFSM FSI
modelling techniques, including parachute modelling techniques, to a new level. The journal
version of the conference paper was published in 2006 (see [36]). These newer techniques had
more computational robustness and were better suited for a new FSI application (such as a new
and complex parachute design or a new parachute manoeuvre) that one might encounter and have
less computing experience with. Soft-landing of a T–10 parachute with pneumatic muscle actuator
(PMA) was reported in [35, 36, 107]. The new techniques put the T�AFSM in a better position
in modelling of large cargo parachutes such, as G–12 (see [37, 38, 62]) and G–11 (see [5]), and
modelling of complex manoeuvres with those large cargo parachutes, such as soft landing (see
[37, 38, 62]) and disreefing (see [38, 62]).

As it was stated in Remarks 8 and 12 in Section 3, the new versions of the DSD/SST formulation
and space–time FSI techniques introduced in this paper render the earlier versions obsolete.
Consequently, the new parachute FSI modelling techniques based on these new space–time FSI
techniques render the earlier versions of the parachute FSI modelling techniques obsolete. The new
parachute FSI modelling techniques offer better computational efficiency (see Remarks 7 and 11).
They also offer a more realistic representation of the parachutes, because now the fabric porosity
can be taken into account in the computations.

12. TEST COMPUTATIONS

All computations were carried out in a parallel computing environment, using PC clusters. In all
cases, the fully discretized, coupled fluid and structural mechanics and mesh-moving equations
were solved with the quasi-direct coupling technique (see Section 5.2).

12.1. A cloth piece falling over a rigid rod

A 1.0m× 1.0m piece of cloth is dropped in the air over a rigid rod that is 0.1m thick and 1.2m
long, from a height of 0.02m above the surface of the rod. The thickness, density and stiffness of the
cloth are 0.002m, 100 kg/m3 and 1.0× 104 N/m2, respectively. The mesh for the cloth consists of
2909 nodes and 5616 three-node triangular membrane elements. The initial configuration is shown
by the top picture in Figure 1. The fluid mechanics mesh contains approximately 58 000 nodes
and 335 000 four-node tetrahedral elements. The computation is carried out with the SSTFSI-TIP1
technique (see Remarks 5 and 10) and the SUPG test function option WTSA (see Remark 2). The
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Figure 1. A cloth piece falling over a rigid rod, at t = 0.00, 0.20 and 0.30 s.

stabilization parameters used are those given by Equations (7)–(13). Split nodal values for pressure
are used at the edges of the membrane structure (see Remark 9). The SENCT-D technique (see
Section 7) is used as the contact algorithm. The GMRES search technique is used with a diagonal
preconditioner. The time-step size is 0.01 s. The number of nonlinear iterations per time step is 8,
and the number of GMRES iterations per nonlinear iteration is 30. The entire computation was
completed with only one remeshing. Figures 1–3 show the cloth at various instants during the
simulation.

12.2. Flow in a tube constricted with a flexible diaphragm

A tube with diameter 3mm and length 6 mm is constricted in the middle with a flexible diaphragm
that has a hole with diameter 1.5mm. The fluid has properties similar to that of human blood,
with density and viscosity 1000 kg/m3 and 4.0× 10−6 m2/s. Figure 4 shows the problem setup.
A pulsating inflow is specified in the form of a Cosine wave with period 0.3 s. The minimum and
maximum values of the magnitude of the inflow velocity are 0.075 and 0.675m/s. A pulsating
traction boundary condition, also in the form of that Cosine wave, is specified at the outflow,
with minimum and maximum values 80 and 120mmHg. The tube walls are rigid with no-slip
boundary surfaces. The diaphragm surfaces are also no-slip boundaries. The thickness, density
and stiffness of the diaphragm are 0.3mm, 1000 kg/m3 and 5.0× 105 N/m2, respectively. The
mesh for the diaphragm consists of 337 nodes and 578 three-node triangular membrane elements.
The fluid mechanics mesh contains 9187 nodes and 50 212 four-node tetrahedral elements. The
computation is carried out with the SSTFSI-TIP1 technique (see Remarks 5 and 10) and the SUPG
test function option WTSA (see Remark 2). The stabilization parameters used are those given
by Equations (7)–(13). Split nodal values for pressure are used at the edges of the membrane
structure (see Remark 9). The GMRES search technique is used with a preconditioner based on
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Figure 2. A cloth piece falling over a rigid rod, at t = 0.40, 0.50 and 0.60 s.

the segregated solver SESFSI (see Section 6.3). Specifically, we use the preconditioner PSIMP,
given by Equation (69). We use ‘Selective Scaling’ (see Remark 14) and scale up the structural
mechanics equations by a factor of 2.0 to enhance the convergence of that part. The time-step size
is 5.333× 10−4 s. The number of nonlinear iterations per time step is 5, the number of (upper)
GMRES iterations per nonlinear iteration is 30, and the number of lower GMRES iterations per
upper iteration is 20. The entire computation was completed without any remeshing. As seen in
Figures 5–7, the diaphragm bulges and flattens in synchronization with the inflow velocity. We
also note from Figure 7 that there is a good match between the volumetric flow rates for the
inflow and outflow.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:855–900
DOI: 10.1002/fld



886 T. E. TEZDUYAR AND S. SATHE

Figure 3. A cloth piece falling over a rigid rod, at t = 0.70, 0.85 and 0.95 s.
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Figure 4. Flow in a tube constricted with a flexible diaphragm. Problem setup.

Figure 5. Flow in a tube constricted with a flexible diaphragm. Time history (left to
right and top to bottom) of the velocity field and pressure on a vertical plane. Velocity

vectors are coloured by their magnitudes.
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12.3. Inflation of a balloon

A balloon, initially spherical, is inflated by pumping air through a circular hole as shown in
Figure 8. The inflow is pulsating in the form of a Cosine wave with period 2 s. The minimum
and maximum values of the magnitude of the inflow velocity are 0.0 and 2.0m/s. Initially, the
diameter of the balloon is 2m and the diameter of the circular hole is 0.6245m. The thickness,
density and stiffness of the balloon are 2.0mm, 100 kg/m3 and 1.0× 103 N/m2, respectively. The
mesh for the balloon consists of 1479 nodes and 2936 three-node triangular membrane elements.
The fluid mechanics mesh for the air inside balloon contains 6204 nodes and 32 455 four-node
tetrahedral elements. The computation is carried out with the SSTFSI-TIP1 technique (see Remarks
5 and 10) and the SUPG test function option WTSA (see Remark 2). The stabilization parameters
used are those given by Equations (7)–(13). The GMRES search technique is used with a diagonal
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Figure 8. Inflation of a balloon. Problem setup.
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Figure 9. Inflation of a balloon. Volumetric flow rate for the inflow and the
rate of change for the balloon volume.

preconditioner. The time-step size is 0.1 s, and the computation duration is 4 s. The number of
nonlinear iterations per time step is 5, and the number of GMRES iterations per nonlinear iteration is
30. The entire computation was completed without any remeshing. Figure 9 shows that volumetric
flow rate for the inflow matches the rate of change for the balloon volume. Figure 10 shows that
the instantaneous balloon volume matches the initial balloon volume plus the volume of air added.
Figures 11 and 12 show the flow field during the two periods of inflation.
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Figure 11. Inflation of a balloon. Velocity vectors coloured by air pressure, from 0 to 2 s.
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Figure 12. Inflation of a balloon. Velocity vectors coloured by air pressure, from 2 to 4 s.
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Figure 13. Flow through and around a windsock. Problem setup.

12.4. Flow through and around a windsock

The windsock has a length of 1.5m and a diameter ranging from 0.25m upstream to 0.15m
downstream (see Figure 13). Initially the windsock is in a horizontal position, and the starting
condition for the flow field is the developed flow field corresponding to a rigid windsock held in
that horizontal position. Then the gravity is turned on for the windsock, the FSI starts, and the
windsock starts falling down. The wind velocity is constant at 10m/s. The thickness, density and
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Figure 14. Flow through and around a windsock. The initial windsock mesh.

Figure 15. Flow through and around a windsock. Meshes at the interface: structure (left) and fluid (right).

stiffness of the windsock are 2.0mm, 100 kg/m3 and 1.0× 106 N/m2, respectively. The upstream
edge of the structure is held fixed while the remaining structure is free and flaps in cycles. The
mesh for the windsock is semi-structured and consists of 984 nodes and 1920 three-node triangular
membrane elements (see Figure 14). The fluid mechanics mesh contains 19 579 nodes and 113 245
four-node tetrahedral elements. Initially, the fluid mesh at the interface is identical to the windsock
mesh. The computation is carried out with the SSTFSI-SV technique (see Remarks 6 and 10)
and the SUPG test function option WTSE (see Remark 2). The stabilization parameters used are
those given by Equations (9)–(12) and Equations (14)–(17). The GMRES search technique is used
with a diagonal preconditioner. The time-step size is 0.0125 s, and the computation duration is
two cycles of flapping. The number of nonlinear iterations per time step is 5, and the number of
GMRES iterations per nonlinear iteration is 30.

We expected the windsock to develop kinks as it flaps in the wind. Therefore, we used the FSI-
GST (see Section 4.5) for smoothing the fluid mesh at the interface. The nodes of the windsock
mesh were generated on straight longitudinal gridlines, and with that we were able to use the
directional version of the FSI-GST, i.e. FSI-DGST (see Section 4.5). For a node A on such a
gridline, we use a weighted averaging involving four nearby nodes on each side: A ± 1, A ± 2,
A ± 3 and A ± 4. The weighted averaging formula is given as follows:

XSMOOTH
A = 0.2XA + 0.16(XA−1 + XA+1)+ 0.12(XA−2 + XA+2)

+ 0.08(XA−3 + XA+3)+ 0.04(XA−4 + XA+4)

We note that this directional smoothing does not introduce any smoothing in the circumferential
direction. During the FSI computations the structure develops kinks, which would make mesh
updating more difficult and increase the frequency of remeshing. With the FSI-DGST, two cycles
of flapping were computed without any remeshing. Figure 15 shows the structural and fluid
mechanics meshes at the interface, one with a kink and the other one smooth. Figure 16 shows
the zoomed (around the kink) versions of the pictures in Figure 15. Figure 17 shows the windsock
and the flow field at various instants.
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Figure 16. Flow through and around a windsock. Meshes at the interface: structure (left) and fluid (right).

Figure 17. Flow through and around a windsock. The windsock and the flow field (velocity and pressure)
at various instants. Velocity vectors are coloured by their magnitudes.

12.5. Descent of a T–10 parachute with fabric porosity

T–10 is a 35-ft diameter personnel parachute with 30 suspension lines each 29.4 ft long. The
thickness, density and stiffness of the canopy membrane are 1.0× 10−4 ft, 2.374 slugs/ft3 and
2.0× 105 lb/ft2, respectively. The fabric porosity for the canopy membrane is 100 CFM. The
cross-sectional area, density and stiffness of the cables are 3.358× 10−5 ft2, 2.374 slugs/ft3 and
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Figure 18. Descent of a T–10 parachute with porosity. Pressure field and velocity vectors
without (left) and with (right) fabric porosity.
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Figure 19. Descent of a T–10 parachute with fabric porosity. Drag force with and without porosity.

1.117× 107 lb/ft2, respectively. The payload is 250 lb. The mesh for the parachute consists of 3385
nodes and 5880 three-node triangular membrane elements, 1496 two-node cable elements, and 4
one-node payload elements. The fluid mechanics mesh contains 133 740 nodes and 810 213 four-
node tetrahedral elements. The computation is carried out with the SSTFSI-TIP1 technique (see
Remarks 5 and 10) and the SUPG test function option WTSA (see Remark 2). The stabilization
parameters used are those given by Equations (7)–(12) and Equation (17). In Equation (8), the
�Na/�t term is dropped. The GMRES search technique is used with a diagonal preconditioner. The
time-step size is 0.0547 s. The number of nonlinear iterations per time step is 6, and the number of
GMRES iterations per nonlinear iteration is 30. First, we carried out a fluid mechanics simulation
with no FSI. Figure 18 shows the pressure field and velocity vectors with and without fabric
porosity. Figure 19 shows the drag force with and without porosity. After that we carried out the

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:855–900
DOI: 10.1002/fld



MODELLING OF FLUID–STRUCTURE INTERACTIONS 895

Figure 20. Descent of a T–10 parachute with fabric porosity. Canopy shape
and velocity vectors at various instants.

FSI modelling of the descent. The entire FSI computation was completed without any remeshing.
Figure 20 shows the canopy shape and velocity vectors at various instants. The magnitude of the
velocity vectors crossing the canopy fabric is 1.6–1.7% of the descent speed.

13. CONCLUDING REMARKS

We provided a review of the space–time fluid–structure interaction (FSI) techniques developed by
the Team for Advanced Flow Simulation andModelling (T�AFSM) and described the enhancements
introduced recently by the T�AFSM to increase the scope, accuracy, robustness and efficiency
of these space–time FSI techniques. We described how the deforming-spatial-domain/stabilized
space–time (DSD/SST) formulation is enhanced, how the fluid–structure interface conditions are
handled in a different way, how preconditioning techniques more sophisticated than diagonal
preconditioning can be used in iterative solution of the linear equation systems, and how a contact
algorithm can protect the quality of the fluid mechanics mesh between the structural surfaces
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coming into contact. We also briefly described, for the purpose of comparison and generalization,
how the SUPG and PSPG stabilizations can be extended to the ALE formulation and problems with
thermal coupling. We presented a number of 3D test problems computed with the new stabilized
space–time FSI (SSTFSI) techniques and demonstrated how these new SSTFSI techniques work.
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